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1. INTRODUCTION

In a recent paper (5], G1.aasiy proposed a special-purpose algorithe for

the computation of equilibrium prices in a single-ccemodity spatial economic

model. The model was formulated as a convex quadratic program with a

separable objective function and with certa in tranashtpmeut-eyp. constraints.

Spatia l equilibri um models of this type have been discussed intensively in

the literature . (See Samuelson (15] , Takayama and Judge [161 and more

recently, Polito [14].) Unfortunately, the original algorithm proposed by

Glassey fails to work in certain cases

The essential purpose of this paper is to present an efficient special-

purpose algorithm for solving the quadratic program arising from the

aforementioned economic equilibrium model. The proposed algori thm is based

on an efficient implementation procedure of the parametric principal, pivoting

algorithm for solving a parametric linear complementarity problem. (See Cattle

(2] for the description of the original version of the latter algorithm and

Pang (9] for that of its implementation procedure.) This latter algorithm

has been found very useful in various other contextS , see Laneko (9, TO] ,

Pang [11 ,12] and Pang , ICaneko and Haliman (13].

The reformulation of the quadratic program as a linear complementari ty

problem to be solved by the parmestric principal pivoting algorithm leads

to the study of an interesting matrix associated with a simple digraph

having weights on the nodes . Several basic properties of such a matrix are

derived . These properties are extremely useful in the development of the

specialized algori thm for solving the spatial equilibrium model.

The organization of the paper is as follows. The next section consists

* ~n a private caamtmication ( 6  1. Glassey informed us that the statement
of the algo ri thm was incomplete.

_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~
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of two parts. In the first part, we review the formulation of the spatial

equilibrium model addressed by Glassey and derive from this formulation an

equivalent linear camplemenearity problem with a very special matrix which

is intimately related to the underlying network structure of the model.

In the second part , we review the parametric principal. pivoting algorithm

and its implementation procedure. The third section presents some basic
properties of the special matrix app earing in the linear complementarity

forusilation of the economic model. In. the fourth section , we specialize
th. parametric principal pivoting algori thm to solve this linear complementari ty

problem and show how the algorithm can be greatly simplified by exploiting

the structure of the matrix. In the fifth section , we report some computational

results with the application of the specialized algorithm in solving some

randomly generated problems of considerably large size and draw some concluding

remarks . Finally, in an appendix, we point out how Glaas.y ’s algorithm can

sometimes fail to find the equilibrium prices and present a couutere~aupl.. 

. , -
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2. ~~~~~~~~~~~

2.1 Model Formulation. The problem addressed by Glaisey (
~3 is to find

a set of equilibrium prices under a certain spatial model. Mathematically,
it a~~unts to finding p~, ~~ and x~~ which satisfy for all 

~~~ —

P a ~~_ b
J~ (1*)

N N
-~~~~~~~ y — Z x ~~~~- E x 2 (i b)

~ 5.1 ~ 5—1

+ c~ 5 
- p

5 
> 0 (ic)

(14)

and

x~ 5
(p

~~+ c~ 5 -pa) 0. (1*)

Here N denotes the total number of regions under conside ration , p
~ denotes

the desired equilibrium price in the ~-th region , y~ is the net iapovt in

that region , x~ 5 is the export from region ~ to region 5 and is referred to

as a flow variable , a~ is the (given) equilibrium price in the absence of

• imports and exports , b~ is a given positive number which is related to the

elasticity of supply and demand, finally, c~ 5 is the nonnegative unit

transporta tion cost from region ~ to region 5 satisfy ing the triangle inequality

c~ 5 < c ~~, + c~,5 for all 
~~~, 5 and y

Incidental ly, the above model is a simplificatio n of those

~~~~~~~~~ 
I
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discussed in [16]. Due to its simplicity, efficient special-purpose algorithm

can be developed. As noted by Glassey , problem (1) forms the Kuhn-Tucker

conditions for the (convex) quadratic program

minimize Z (~~ 
bj

2 + r  CmS
Zo,S~ aj~) aubi.ct to (ib) and (id).

Notice that by (Ib) , we may assume, with no loss of genera lity , that

— 0 for all ~~. Using (1*) and (ib) to el( f”~te the variables and y ,

• we may easily cast problem (1) as the linear compl.msntarity problem: find

z E ~~~~~~ such that

q + Ms ~ 0, a > 0 and gT(q + Ma) — 0. (2a)

Here q — (q,~) and a — (z,~) with k denoting the ordered pair (t~ ,$) of distinct

• indices e and 5 are $(N-1)-vectors whose k-c~~~oaents are defined as

and Zk X
~S . (2b)

Moreover, N — (m.d,) with k and (.. denoting certain ordered pairs of distinct

indices is the N(N-1) x N(N-1) matrix whose (k ,.(.)-.ntry is defined as

b -i-b
5 Lfk~~~~.(or,Ø)

if k (
~,5) aud 4 (J,~)

- •
• b

5 ifk~~~(~ , 5 ) , 4 — ( y j ) and~~~~ y (2c)

tf k.(~,$),4a (~,y)and 5~~~y

if

• 
-b2

0 othe rwise.

~~~~~~~~~~~~~~~~~ ~~~ ---- — - - I ~~~~~~~~~~~~~~~~~~~~~
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5

The matrix M is an example of an arc-arc weighted adjacency matrix.

Formally, given a simple digraph G — (V,A), With V and A. denoting the sets

of nodes and (directed) arcs of the graph respectively, and a set of positive

- • 
scalars (b~~ E N representing weights on the nodes, the arc-arc weighted

adjacency matrix of this weighted graph C is the real square matrix N such

• - - that, associated with each pair of arcs k and .1, in a, is the entry ~~~ defined
as in (2c). We point out that the digraph arising from the spatial economic

equil~.brium model is complete.

At this point, we should emphasize that the entire development of this

paper, including all the results and the proposed algorithm for the equilibrium

model, does not depend on the coi~ leteness of the simple digraph arising from

the model. Consequently, our approach is applicable not only to the on~
treated by Glaasey , but as veil as to its generalization where the underlying

digraph is arbitrary and is not necessarily complete. Nevertheless, in H
the remainder of this paper we continue to assume that the digraph arising

from the equilibrium model is complete.

The proposition below identifies the first property of an arc-arc

weighted adjacency matrix.

Proposition 1. Let G — (V,A) be a simple (weighted) digraph with N denoting

its arc-arc weighted adjacency matrix. Then N is symeetric and positive

semi-definite.

~~~~~~~~~~~ The symeecry is obvious . ~~ show that N is positive semi-definite ,

let a — be an arbitra ry vector. By an easy calculation , we may deduce

ZTM Z .  £ b~y2 
-

~ EV ~

where

_ _ _  _ _ _ _  _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - .1

— 
_ _ _ _ _ _ _ _ _ _ _
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7 t  z, - t  a
~ ØI EPa, ~~~ 5E8a, ~~~~

with Pa, and denoting the sets of predecessors and successors of ~

respectively. Q.LD.

The proof of the proposition suggests that an arc-arc weighted adjac ency

matrix may be related to the node-arc incidence matrix of the graph . This

relatio nship is made explicit in the next proposition whose proof is easy and

thus omitted .

proposition 2. Let G and N be as in Proposition 1. If A. is the node-arc

inc idence matrix of the digraph G, then

M _ L TDA

where D is the diagonal matrix whose diagonal entries are the weights b

of the nodes.

As we shall demonstrate later, N is not always nonsingular, or

equivalently, positive definite.

22. parametric principal Pivoting. As indicated in the introduction,

we plan to solve the linear complementarity problem (2) by the parametric

principal pivoting algori thm. For this purpose, we briefly review this

algorithm and its implementation procedure .

Formally , for given n -vector s p and q with p > 0 and n a n matrix N,

the par ametric linear compiementari ty problem is to find, for each value

of the par ameter 1 lying in some interval (X,.), an n-vector a satisfying

q + ) p + M z ~~~0, z �0  and zT(q + lp + M z ) _ 0. (3)

— ~~~~~~~~~~~~~~~ ~Ii~~:T~~~~
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Alzorithm 1. Parametric Principal Pivoting Algorithm.

Step 0. (Initialization) Let the initial canonical system be given by

w - q + Xp + Ma

where q + Ip ~ 0 for sufficiently large values of 1. Put j — 0, 1,~ — —
• Step 1. (Ratio test) If p ~ 0 (this cannot oct~ur initially), Let

— (q + Ip, 0) for 1 tying in the interval and ter~l~~ ce .

Otherwise , deter mine the critical index r by

— - 
~~/P~ — max t-~~/P~ : Pt > 0].

Put (w(1),z(X)) — (q + lp,0) on

Step 2. (1 x 1 Diagonal pivot) If mrr. — 0, go to Step 3. Otherwise,

pivot on and let w,z p,q and N correspond to the resulting system.

Replate j with j+i and go to Step 1.

Step 3. (2x2 Block pivot) If mir ~ 0 for all i, redefine ~ by ~ —

and terminate. The problem (3) has no solution for I <~~~. Otherwise, define

the critical index s by

- 

~~~~~~~ 

~~~~~~~~~~~~~~~~ 
f(q 

_ !.Lii)( ..L_) : mir <O}

Perform a pivot operation successively on and mar . Let w,z,q,p and N

correspond to the resulting system. Replace j with j+1 and go to Step 1.
V . refer to Coetle (11 and Graves (7j for a detailed discussion of the

theory of pivotal algebra. Under the cunditio~ that the initial N is
a P-matrix (i.e. has positive principal minors) or is positive semi-definite ,
the algorithm above viii compute a solution function z(1) to the parametr ic
linear c~~~l.mentarity problem (3) in a finite nueber of steps , provided tha t
so.. appropriate tie-breaking rule, lik e the one described in [7J, has been

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -— - 

— ——.~ -— —.•—.-—•—— - - 
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incorporated in the algori thm. (See (2] .)

The 2x2 block pivots described in Step 3 of the Algorithm are designed
specially for positive semi-definite matrices. They are redundant if
N is a P-matrix. In (11], th, first author has proposed an efficient
implementation procedure for actually carrying out the 1 x 1 diagonal pivots.
The procedure is rephras ed in the algorithm below.

4]!&OrL the 2. The Parametric Principal Pivoting Algorithm Using only
Diagonal Pivots .

Step O.

Step 1. Sotve* the system of linear equations for (~~~~ , ~~~~)

~1
— 

~~~~~

- 

J and compute

— 

~~~~~ — (q~,p1) 
-

Step 2. If < 0 and 
~~ ~ 

0, set (z(1))
~ 

0 and (z(X))3 — - -
for all ~ ~ 1014 and term~.iiate. Otherwise determine the new critical value

“new — max [max f - > 0, i El) , max [ - 
~ 

/~ : <0, j ES))

and let k be a maximizing index. Put (z(X))1 — 0 and (z(X))~ — - - 
~~~~~

for all. I in the interva l ~~~~~ 1014]. If I <~~~, terminate. Otherwise

set 1014 — 1new

• * If A. is an nxm matrix and ~ and .1 are subsets of [1,...,n) and f1 ,...,m)
respectively , then by we mean the submatrix of A. whose rows and coluens
are indexed by I and S respective ly . Similarly, if q is an u-vector, then
by q1, we mean the subvec ear of q whose components are indexed by I.

- _ . 
- 

— - •  - - - ~~~~~~~~~~ -~~-~~~ -m -
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Step .~~ Update the index sets I and 5:

1j014 u t k )  i f kE J Old

S — <
~~~ L J 014 \tk i f kE Jold

and 1nev — [1 , . . . ,n) .s.j . Go to Step 1. :
We point out three remarks. First, the parametric principal pivoting

algorithm can be easily used to solve a linear complementarity problem

of the form (2a). In fact, it suffices to choose ~ — 0. Second, Algorithm
• 2 is also applicable when N is positive semi-definite, provided

that it is not necessary to perform the 2x2 block pivots. As a matter

of fact, we shall show in Section 4 that this is indeed the case when the

linear comp tementarity problem (2) is solved by Algorithm 1. Pinally, if

a linear complementarity problem with a positive semi-definite matrix

is solved by Algorithm 1 and if all the pivots are 1 x 1 diagonal, then

the algorithm must terminate with a solution to the problem.
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3. BASIC PROPERTIES OF AN ARC -ARC WEIGHTED ADJACENCY MATRIX

In this section , we establish some basic properties of an arc-arc

weighted adjacency matrix K associated with a general simple digraph having

weights on its nodes. Our objectives are, first, to characterize the

nonsingularity of an arbitrary principal submatrix of N in terms of the
• structure of the “associated subgraph” of the submitrix , and then, to show

how the solution of the various systems of linear equations required in

Step 1 of Algorithm 2 ~an be achieved by identifying the dacendeuts

of each node in the associated subgraph of N55.

Noticing that each principal submatrix of an arc-arc weighted adjacency

matrix is itself an arc-arc weighted adjacency matrix associated with an

obvious subgraph, we shall develop the results in terms of an arc-arc weighted

adjac ency matrix N defined with respect to a fixed but arbitrary weighted

digraph C with the understanding that these results apply readily to each

of the principal submatrices of possibly another arc-arc weighted adjacency

matrix. In particular, this digraph C is not necessarily the one arising

from the spatial equilibrium nodel discussed in the last section.

Recall that a cycle in a digraph is a sequence of arcs connecting a

node to itself. The directions of the arcs are irrelevant in the cycle. A

minimal cycle is one which contains the minimum tuimber of arcs. It is

important to observe that if an arc is incident to two nodes in a minimal

cycle , then th. arc must be one of those in the cycle. Throughout the

paper , all digrapha are simple~

~~~~~~~~~~~~~~~~~~~~~~~~~~~
-— 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~~~~~~~~~J ~~~~~~~~~~~
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A
~ ~c..._______ - ’e 

~~ ... _
‘• ~~

ç Figure 1: Ev~~~les of cycle

Figure 2: The outer cycle is not minimal
ii

Proposition 3. If the digraph C contains a cycle, then its associated

arc-arc weighted adjacency matrix N is sing~lar.

• Proof. It suffices to exhibit a nonzero vector v such that Mv — 0. Choose

a minimal cycle in C and let A 1, A.2 , .. . ,At be the arcs in the cycle. Fix

the direction of one of these arcs, say A 1. Define a vector v — (vk) as

follows

if k 
~
Ai for some i and if and A 1 are oriented

I 

in the s~~~ direction

v — ~ -1 i f k— L  for someiand tf k and A  are orjentedk i i 1
in the opposite direction

L 
o oth erwise.

_____-~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~: 111JTL ~
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We claim tha t Mv — 0. Consider a specific component, say (Mv)~, with 1. denoting

a certa in arc. If the arc 1~ is not connected to any node in the i~fnimal cycle,

— •
1 

then obviously (Mv)~ — 0. On the other hand, if 1. is incident to one single

node in the cycle, say node ~~ , then the 1.-row of N is given by

A 1 &2 ... ... Ae~ AL_I A~,... 0 0 ... s1b ... s2b ... 0 0 ... I
where A

~ ~~ 
At, are the two arcs in the cycle which are incident to node ~

and where s
~ ~~~ 

is equal to ±1 depending on whether the arcs 1. and

are oriented in the opposite or the same direction. If both pairs of arcs

(1. and A~) and (4.. and A t,) are oriented in the same way (i.e., if —

then the arcs A~ £~ , must be oriented in the opposite direction (i.e.,

then VA — - vA ); on the other hand, if the two pairs of arcs (4.. and A
~
)

and (1. and A.
~
,)are oriented differently (i.e., if s

~ 
— - 

~2~’ 
then and

must be oriented in the same direction (i.e., then V
A 

— V
A 
). Consequently,

t

in either case, we have

(Mv)1. — (31vA + 5fA. )b a. 0
C t ’

Finally, if 4.. is incident to two nodes in the cycle , then it must coincide

with one of the L arcs by minimality of the cycle. Let ’ s suppose

4 . L
~~~~(a ,Ø ). Then the 1.-rov of x is given by

A A ... A ... A ... A.1 2 t u1 u2 -1
( ... 0 0 ...(b~+b~) ... s 1b ... s2b

3 
, • . 0 0 ... ]

i ~~~~~~~~~ -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _  •-~ ~ - --- -—-“ --~~~~ - -
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where A and A. are the two arcs adjacent to A in the cycle and whereu1 u2

is equal. to ± I depending on whether A t and A (A. ) are oriented in the
U

1

- 

- 

opposite or the s~~~ direction. By using a similar argument, we may deduce

(Mv)1.
a (b + b

~
)vA + s lb V  +s 2b~

vA -0.
Ill U2

Consequently, N is in fact singular . Q.E.D.

Given a nona ingular principal submatrix N11 of a square matrix N, there

exists a permutation matrix P such that

N12 1
P M P ~~~( j .  -

‘~~21 
M22 /

_ _ _ _ _ _ _ _ _ _  

-1The Schur complement of N11 N is the matrix N22 
- M21M11M12. ~breover,

the Schur determinental formula (see Cottle (3] e.g.) is

-H det N — dat N11 x det ~N22 
- M21Z41~M12)

The next proposition is a partial converse of the last one .

Proposition 4. If the digraph C is a tree , then the arc-arc weighted

adjacency matrix M is nonaingular .

~~~~~~~~~~~ We use induction on n(~ 2) the number of nodes in G. The assertion

is obvious for n a 2. Suppose that it is true for a tree with n nodes.

Consider a tree C with n + 1 nodes. Since C is a tree, it contains an end

4

— ~ —- ----- •

—~~
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node, say ~~. Let A. be the only arc in C incident to ~ and let ~ be the other

• end point of the arc A. Let C’ be the subtree obtained from C by deleting

the node o and the arc A. Assign the same set of weights to all nodes

in C’ except for the node a where we assign the weight 1/(b 1 + baT’). Let

N’ be the arc-arc weighted adjacency matrix obtained from the (weighted)

digraph C’. By induction hypothesis, K’ is nonsingular. We now show that

N’ is precisely the Schur complement of the diagonal entry MM in the

original matrix N. With no loss of generality, we may assume that

H (
MM ~~~~

N (  I
IM 2A. N22’

where M~~ ia given by H

M~~ — (0 ~~~~ 0 b8 ~~ 
b~ - ha ... - ba 0 ••.  0 1

with the plus (iv~4mi~) h
a appearing in those arcs (i.e., coli s) which

are incident to the node a and oriented in the opposite (same) direction

as the arc A. 1~ reover, the principal submatrix of N22 corresponding to

those arcs which are incident to the node 3 is given by

b 1~~ -~1+za L_i EJ

where K is the matrix of l’ s and where E is the diagonal matrix whose
• diagonal entries are the weights of those nodes (except for m) which are

adjacent to the node 3. The s~~~ principal submatrix of -M21Mj~K,2 is

given by

~~~~~~~ç E E
b0,+ b

3 L-E K 

H: ~~~~~~~~~~~~

- 

~~~~~~~~ 
-~
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In fact, all entries of the matrix -M21M~~M12 are zero except for those of

this principal submatrix. It then follows that all, entries of the Schur
complement N22 ’N2l Mi~~.2 are the same as the corresponding ones of N22 except
for those in the principal aubw.atr ’ix which is equal to

- 

• - 

- 

(b~ 
~ b2 

)~~~~~~~ 

1:] + ~~• 
b;’ b ;’ ~.: i

It is now obvious that - N2’~~~M,2 — N’ . Since both NM and its

Schur complement are nonsingular, it follows from the Schur determinen~aj.
formula that so is N. This completes the inductive step and the proof. Q.E.D.
Remark. The above two propositions can also be proved by using Proposition 2
and the tree-property of the basis matrix of a Linear tranahipment problem
(see Danczig [4]) .

Corollary 5. If the digraph G is a fores t , then the arc -arc weighted

adjacency matrix K is nonsingujar .

~~~ It is sufficient to observe that such a matrix i~ block diagonal

with each diagonal block corresponding to a tree. The corollary then

follows ime.diately from Proposition 4. Q. E. B.

Corollary 6. Let N be the arc-arc weighted adjacency matrix associated

• with the (weighted) tree C. Then

det N — (
~~

) x (tb~~)

where both the product and the at~~ation range over all the nodes in C.

~~~~ We use induction on the number n of nodes in C. The formula is

certainly correct for n — 2. Suppose that it is true for a tree with a nodes .

Consider now a tree C with n+1 nodes . Using the same notations as in the

proof of Proposition 4, we have by the Schur determinental formula,

- .-~~~~~~~~~~~~~ . .
~~ 

_ _ _ _ _ _ _

—~~~~ - — — 
rrn~~~~
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det N a (b~ + b3
) x det N’

Nov the induction hypothesis implies that

dat N’ — U b x l/(b 1 + b~~) z E
all y ~~

‘

Prom these two equations, th, desired for zla for d.c K follows readily.

Q. K. D.

Combining Corollary 5 eni Pr oposition 3. we obtain the theorem below

which characterizes the nonsthh’zlarity of an arc-arc weighted adjacency

matrix associated with a (weighted) digraph.

Theorem 7. Let 0 be a digraph with positive weights on the nodes. Then

the arc-arc weighted adjacency matrix is nousingular if and only if the

gra ph Gis a foresc.

Let A — (
~J) be a fixed but arbitrary arc in a tree C. We say

that a nod. ~y which is differ ent from ~ and 3, is on level 1 with respec t to

the arc A if y is incident to A. Inductively, given a node y not on level

Ic - 2, we say that it is on level Ic with respect to the arc A if it is

adjacent to one of the nodes on level Ic - 1. The nodes ~ and 3 are considered
to be on level 0 Given two nodes ‘

~
‘
~~ 

and 
~2 

on levels Ic
1 and Ic2 respectively

with Ic1 <Ic2, we say that y2 is a descendent of if th, nodes in the
umique path connecting node to node are on strictly descending Levels.

By convention, we consider a node as a descendent of itself. We

shall denote by the set of descendents of the node ‘q. itotice that

a.V4 partiti on the set of nodes in C. We call the numbe r Z b~~cE D~ ~ 

-~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
—•--•-

~-- —
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modified weight of the node y , and denote it by ~

A 
_ _ _ _ _ _ _  level O

V (‘
~ level. I

level 2

/ 
_ _ _ _  level 3

(!
~
) 

C

Figure 3: Different levels in a tree

Note: The node V3 is a decendent of

~1 but not of 14

The two propositions below are fundemental to the solution of a system

of linear equations involving an are-arc weighted adjacency matrix.

Proposition s. Let G be a weighted tree with M being its arc-arc weighted
adjacency matrix. Let A a (

~,3) be any arc in C. Let NiL be the A-col~~
of N with the diagonal entry deleted and let N’ be the principal submatrix

of K with both the A-row and the A-colt deleted. Then the vector

is given by the foLlowing: if Ic # A is the arc (6,y) with V ED 6, then

fS /sum if Ic and A are oriented in the opposite direction
((M’)

~~
K IA)k 4~ 

V

if Ic and A are oriented in the same direction



_________  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_____  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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where
if yED~

sum —

if ’qED
3

~~~~f. The matrix K’ is block diagonal with the two diagonal. blocks

nd M~ b.ing the principal submatrices of N’ whose arcs are incident to nodes

in D~ and D~ respectively . Due to this block diagonal struc ture of K’ , we

may, with no loss of generality, assume that the arc A is incident to an

end node , say 3; or in othe r words, we assume that N~ is vacuous • Let C’

be the subtr ee obtained from C by delet ing the arc A and the node 3. We

may further assume that N’ has th. form

N’ N’

— ( 11 
12)

~q1

where 14~ is the principal submatrix of N’ whose arcs are incident to ~~.

With respect to this partitioning, we may write

I M 1~

where is a vector of plus and minus ones such that 01A~~ 
— 1(-I) if the

arc s 4.. and A are oriented in the opposite (sm) direc tion . If we write

(N’) 1Mj,~ a(x1 ‘~ according to the above partitioning of 14’ , we may easily deduce
-

•

(M~1 - M~2(~q2)
1 M~1)x1 

a bJ(~

i~~ ~~~~~~~~



—.—- - ,--~- -~~~~ --~-~--.- —--,—-~~ ~~~~~~~~~~~~~~~~ 
- 

-~~ ~1

• By the proof of Proposition 4 and an inductive argument, it is not difficult
to show tha t the Schur complement (M~ ~ 

- M~ 2~~22~ 
is the arc-arc

weighted adjacency matrix associated with the subtree C” obtained from C’
• by deleting all th, arcs not incident to the node ~ and all the nodes not

• 

- 
adjacent to ~~. The weight of a node ~ in the suberee C” is equal to ~~~ 

-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~ In face, thj s schur complenenc jg

given explicitly by

- M 2 (N~2) 1z42l — Z + b~M~L(14~A)
T

‘where t is the diagonal matrix whose diagonal entries are the inverses of the
modified weights of the nodes adjacent to ~ in G”. According to Sherm an-
)~ rrison-Woodbury formula (see Householder [8, p. 124] e.g.) ,  we obtain

r b~t
1
M’ (M )T~~1~~

• x b 1Z - l x ~• I 
b ‘~~‘ )T~~l14t lA

L ~~~1A lU

which gives

x1 —

This establishes the desired formula for 
~~~~~~~~~ 

provided tha t Ic is

incident to node 
~~. To establish th. formula for Ic not incident to ~, we

evaluate z2. It is not difficult to see that is again a block diagonal
matrix with each diagonal block being the principal submatrix whose arc s
are incident to nodes in for some node ~ in the tree C”. Again we may

assume that consists of just one single block with all the arcs incident
to a certa in descendent of a specific note o in C” . We then h*ve

____________________________________ 
~~~~~~~~~~~~ 
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M22x2 
a - M~1x1 

a - b~2c 1
M~~,

• 0

where A’ is the arc connecting ~ and a, say A’ (o~,a) and M~~, is defined

i~ a faabien sinilar to N~A above. By decomposing x2 
_

(
X
211 

with
1~ X221

corresponding to those arcs incident to the node a and using the same

argument, we may easily deduce 
-

x21 
a - x ~~~* ~X’) 1 M~4/~~~

C
where Z’ is the diagonal matrix whose diagonal entries are the inversás of

the modified weights of the nodes adjacent to a. Substituting x~~ into the

above expression for x21 1 ediately yields the desired formula for

for Ic incident to a. The proof of the proposition can now

- 
• be completed by repeatedly using the above argument to all branches of

the tree C. Q. E. D.

Proposition 9. Let G ,N,A P MIA and N’ be as in Proposition 8. Then

14 - — (6~) 1 + (~~)
_I

• 
~~~~~~~~~~~ To simplify the notations, vs assume , as we did earlier , that

the arc A is incident to the end node 3. Then by Ocrollary 6 end the

Schur dete rm inenta l formula , we have

_ _ _ _ _ _ _ _  

_
~ iiE~ ~~~
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- (MlA)
T(M~)

_l
MlA 

a det 14/det N’

- ( fl b~
) 

~~ , ~ ~~ i(,~, ~~
bv ~ x ~ b;1j

‘I ~~~ 
J

aa desired Q. L D.

Using the same notations as in Proposition 8, we consider the solution

of the system of linear equations Mx — d for some given vector d. We may

assume with no loss of generality that 14’ is a leading principal subisatrix

of 14. Partitioning the vectors x and d accordingly we may write

( ~~
‘ TMlA x ’

T —
M~~ Z~ dA

which implies

~
MAA 

- (x) T(N~)
lM )  — dA - ( M ) ( M ’ ) d (4a)

and

— (K’ )~~d’ — (M’)’M,AZA (4b)

Combined with Propositions 8 and 9, these latter two formulas show how the

two vectors x and (M’)~~d’ can be efficiently c~~ uted from each other. In
fac t , suppose that (M’ )~~d’ is Iniown, then Proposition 8 shows that

• - •  ~~~~• • -  -~~~~ ~~~~~~~~~ • • — -~~ -~~~•- -~~~~ - • • •• ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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can be obtained by identify ing the descs~de~t~ of each node. Together

with Proposition 9, formula (4a) yields the component xA readily. Substituting

• and using Proposition 8 again , we may easily compute x ’ from (4b) . Conversely ,

if x is known, then (M’)~~d’ can be obtained readily from (4b) as well.

• 1

I • I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- 

.
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4. SPECiALiZATiON OF THE PARAIGTRZC PR2~~IPAL PIVOTING ALGORITW

In this section , we specialize the parametric principal pivoting

• algorithe to solve he linear complementarity problem (2) arising from the

spatial equilibrium model. Our purposes are (1) to show that the problem

can be solved by perfov tqg the 1 x 1 diagonal pivots exclusively and (2) to

derive from thi, result and those established in the last section an efficient

specialized algorithe for solving the problem. To achieve these, we first

state two preU~4na ry resul ts having to do wi th the app lication of the
par~~~tric principal pivoting algoritho for solving a general parametric

linear c~~~lementarity problem with a symestric positive semi-definite matrtx~
Lemea 10. Let 14 be any sy~~~tric positive semi-defin ite matrix. Consider

th. solution of th. parametric linear ccmpl.mentarity problem (3) by’

Algorithe 1. Let S denote the index set of the basic s-variables at each

iteration. Then M~~ is nonsingul ar. ~~reover , if a 2 x 2 block pivot occurs

at a certain iteration and if r and s are the two critical indices obtained in

Steps 1 and 3 of the algori tlmi, then r~~J and sEJ .

The two assertions contained in this leuma are rather well-known in

the theory of pivotal algebra. Their proo fs are thus omitted. (The

authors are grateful to Professor I. Caneko for pointing out this fact.)

Corollary 11 • Let I be the index set of the currently nonbasic s-variables.

If the maximum ratio in Step I of Algoritho 1 does not occur at the

nonbasic index i E I, then th. variab le can not become basic at the next

pivot.

P-roof. Under the given assumption , the only possible way for to become

basic is for i equa l to the critical index s . But Leema 10 asserts that this

is impossible . Q. E. D.
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With these two general results, we proceed to solve the linear

couçlementarity problem (2) . RecaLl that the lower limit ~ of the parameter X

is zero. Combining Leema 10 with Theorem 7, we obtain

Theorem 12. Throughout the solution process, the set of basic flow variables

can not contain a cycle.

In (4] , Glasa.y shoved that a solution to (I) can be found which

contains no transshipment of flows • The theorem below extends this re~u1t.

Theorem 13 • Let the parametric vector p be chosen such that all components

are equal. Then throughout the solution process, there is no transshipment

of flows.

• We need three lemnas to establish the theorem. Frost now on , we let

the vector p be chosen as stated iii the theorem.

~~~~~~ 
Let 5 be the index set of the currently basic flow variables

Suppose that Ic — (
~~

) EJ. Then the nonbasic variable z~ with 4 —

can not become basic at the next iteration.

Proof. Motice that Theorem 12 implies that 4 E .3. The 4-component of

the current c-vector before the next pivot is given by

~~~~a q
4

_ M ~J ij q5 .

• It is easy to veri fy that

if j — k
—

(_ 0 otherwise

Therefore , we have

H ~~~~~~~~~~~~~~~ + c ~~~> O .

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~



______ •~~~ T T ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---

25

Eence, according to Corollary 11 and the termination criteria, the

variable z4 can not become basic at the next iteration. Q. E. D.

L~~ a15 . Le t Jb e as in Lemea l4. Suppose that k1 — (r ,5) and

Ic2 — (~,y) with ~ # y are in .7. Then he nonbasic variables z~, and 54• 1 2

where — ~~~~ ~~ ~2 
— (~‘,~) can not become basic at the next iteration.

Proof. Notice that Theorem 12 implies that ~J and ~2 ~~ 
The

• 4~ -component of the current q -vector is given by

— —1
— q
4 

- M4 J (M~J ) q5

It is not difficult to show that (ef. the proof of Proposition 3 e.g.)

• f-I

( M / ~) - I if I - Ic2

• 0 otherwise.

Consequently, we have

— q
4 + ~~ - 

~~~~~~ — c~~ + c
3~ 

- c >0

where the last inequality follows f~~m the triangle inequality of the
• transportatio n costs • Rence according to Corollary 11 and the termination

crite ria , the variable can not become basic at the next iteration .

Similarly, we may establish the same conclusion for z4 . Q. E. 1).
2

t • - 
_ _

--• 
~~~

-- 
~~

.•
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Lesins 16. Let S be as in Lema 14. Suppose that J contains no

transshipment of flows. If the arc 4 is such that lU [4) contains a cycle ,

then the nonbasic variable can not become basic at the next iteration.

In fact, the 4-component of the current q-vector is nonnegative.

Proof. Theorem 12 implies that S contains no cycle and that 4 £5. Suppose

that the cycle in S U ( 4 )  contains an even number of arcs . By the above

two lameas, vs may assume that this number is at least four . Notice that 4

rmlst be one of these arcs and that there are precisely two arcs adjacent

to each arc in the cycle. Let 4 — (B,~
) and let the two arcs adjacent

to 4 be Ic1 — (
~i,8i) and Ic2 — (

~2,
6
2). Because of the even number, there

are two cases: (B — and 
~~ 

— 62) or (‘i’ — and B — 62). Consider the

first case , namely ~ — ___ — (cf. Figure 4). The 4-components of

the current q- and p-vector are given by

- 
• 6 1

B - ~~ 
/ 

0~~~~~~~~~~~~ 0~~~~~

/
~

• - 
• Figure 4. An even cycle with no transshipment

t

I.

_ _
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(14 - q4 
- M~~M~~q5 and — - M~~Z4j~,p5

• By the proof of Proposition 3, one can easily deduce that

10 if j is not in tbe cycle

(
~LJMj~

) .~~ 1 if j is in the cycle and oriented in the
~ ( opposite direction as 4

• 1-1 if j is in the cycte and or j entedin t he
same directi on as 4

From this and an easy calculati on , we may deduce F

~ Ec - E c  and~~ — O-C. 
1

j~~~~~ i -C.

where the first and second suns in the expression for 
~~ 

range over those
arcs in the cycle which are oriented in the same and opposite directions

as 4 respectively. Notice that — 0 follows from the fact that the
cycle contains an even number of arcs. Consequently , according to the
ratio test in Step 1 of Algorittnn 1 and Corollary ii, z4 will not become
basic at the next pivot. Moreover, we must have q4 � 0 because the non-
negativity of the component + 1p4 is maintained throughout the algorit ho.

Consider the second case, namely y — and a — 62 (cf. Figure 5). Bythe same token, we may similarly deduce

~4 — z c 1 - t c i
• j J  i

• where th. two s~~~ations are ranging over the same sets of arcs as before .

By the triangle inequality , it follows that

~~~~~~~ ~~~~~~~~~~~~ 
_ _____~~ i~~iI_~

__ J
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• Y — ~~ 4”

— B

Figure 5. An even cycle with transshipment 
-

~ q4, > 0 , where C’ — (m2,61). The Last inequality follows from the

~ j 
first case. Consequently, the variable 54 can not become basic at the
next pivot. Similarly, we may establish the same assertion in the case where
the cycle is odd . Q.E.D.

Proof of Theor em ~~~~ We use induction on the number of iterations • it.

assertion is obviously true at the first iterati on . Suppose that it is t rue
after t iterations and the algoritho La entering its (t + 1)st iteration.

Let S be the index set of the currently basic flow variables . By induction
hypothesis S contains no transshipment of flows. Moreover, by Theorem 12 , J
contains no cycle as veil. It suffices to show if Ic — ~~~~~~~~ ES, then all

• var iables 54 with C — (5,y) or 4 — (y,~) can not become basic at the next
_____________ ___________ 

1.~
— —  — ~~~~~—~~~~ -—-~~~~~ 

~~~~~~~~~~~~~
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pivot. To be specific , we let -C — (8,y). By Leuma 14, we may assume that

# ~~. Moreover, by Lemea 15, we may assume that i — (~~
,y) E S. Finally

by Lemea 16 , we may assume that Ju t- C.) contains no cycle as veil. The

current i- and C-c~~ onenes of the p-vector are given by

P~~ ’ P j - M ~j 1~~Pj and

Subtracting the two equations gives

- 

~i 
— -

• ~~~kJM;#J~~~~k .

Similarly, we may deduce 
• -

Hence , it follows that

- q4p~ 
+ q~p4 — (-~4 + ~~~~ + 

~~“k

Suppose that ~ 0. If the maximum ratio occurs at the arc 4 such

that-~~4/1~,>0~~then we have

so that + <0 for nonnegative values of L But this contradicts

_ _ _ _ _  

-
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the fact that + is kept nonnegative throughout the algorithm.
• Therefore , if 

~~ ~ 
0 , then either the algorithm terminates with the

arc 4 remaIning nonbaaic or else the maximum ratio cannot occur at the
arc 4. In either case, the theorem is proved.

Suppose now > 0. Then we have

- + ‘l
~
l’
~, ~

Now, if the left-hand term is nonnegative, then so is which then implies

that > 0. In this case the variable a4 can not become basic

in the next iteration. On the other hand, if the left-hand term is 
• -

negative, than we would have

• 
- 

~~~~~ 
/p4) < - ~~~~ /~~~)

unless 
~t. ~ 0. Consequently , the maxiimsn ratio will not occur at the

• arc C. The desired conclusion therefore follows from Corollary 11.

Q. E. D.

We may now state and prove our principal result.

Theorem 17. Let the parametric vector p be chosen to be the vector of

ones . Then throughout the solution process , all pivots are I x I diagonals
In other words , all the diagonal pivot entries are nonzero.

Proof. We use induction on the number of pivot iterations • The assertion

is certainly true at the first pivot becau se all diagonal entries of M are

positive . Suppose that the assertion is true for t iterations and the

algorit hm is enter ing its (t + 1)st iterat ion. Let S be the index set of

• ——- -
•-
-•-- 

— .-•• --,.~~~~
- • 

~~

--.-- 

- - -  -

- 

— ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ --
--
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basic flow variables at the end of the t-th iteration . Suppose now that the
ma~j aum ratio occurs at the critical index r such that the corresponding
diagonal pivot entry is zero . Then r ~ S and the matrix

( M 35 M,~~~

Mrr I

is singular. Consequently the set of arc s in JU ~ r )  must contain a cycle

by Theorem 7. Since S contains no transshipment of flows, Lemea 16 implies ¶
that the current critical va lue of 1 is nonpositive . In other words, the
algorithm will terminate without performing further pivots. Q. B. D.
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Susnarizing the discussion , we now present the promised algorithm
• for solving the linear compl~~ ntaxity problem (2) arising from the

• spatia l equilibrium model.. The algorithm is a straightforward specialization

of Algorithm 2 to this applica tion.

The Algorithm.

Seen 0 (Initializatio n) Let .1 — 0. Determine

• 1 ” m a x ( - ( a ~~- a ~~+ c ~~~) :~~~#~~ ,~~~, s E v j .

If 1 < 0, terminate. A solution is given by x — 0. Otherwise , let

k— (~,~)beamaxjmjzing arc. Let

L I k E S

L I kE S .

Sten 1 (Search for descendants) Identify the descendants of the nodes

~ and ~ which are incident to arcs in 5’ . Determine the modified weights
• of these descendents (including the nodes ~ and ~ as well). Compute the

vector M
~~J.

MJ,k according to Proposition 7*

Step 2 (Updating of basic components) Set

- 

f 
~~~~~~

‘ ~~ / (~~
‘ + if k E S

ilk  E S

* The set 3’ may be a forest but not a tree . The proposition is nevertheless
applicable because obviously , (M

~~St MJ~k)j — 0 if the arc j is not connected
to Ic. Hence we need to compute only those components which are connected
to Ic.

~~~~~~~ __________ ——-- —~~~~~

— 
— 

— _•____•__•_ i --•- -•-—--- ——------——-- •—----~~~~~~—- ~~~~~~~~
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and

~~ ‘ 
a q~j ?5t5IM,yt~ (p~ ,

• Step 3 (Updating of basic index set) Set

5 f J U ( k )  ilk  E S

- 
L I k E S

I~SL.~ (Updating of noubasic components) Let I — J~ . Compute

• 
• (~~~~~ 

q1
, — ~ q1~ - M15(~3

St ep 5 (Ratio test) Determine

• 
I 1.m (aax(~~~ /~~ :~~~ >O , ~~~~~~~~~~~~~~~~ :~~~ <0 , ~~~~~J f l.

II 1 < 0 , ter~(nate. A solution is given by (~) — (.
~

) . Otherwise , let

Ic — (a,B) be a aar4mizing arc . Go to Step I.

According to the third remark at the end of Section 2, the proposed

algorithm will compute a set of equilibrium flows in a finite number of

steps.

Some Comoutational Remarks. The updating of the nonbasic components in

Step 4 is easy to carry out. Indeed, for each nonhasic arc it suffices

to determ ine the bas ic arcs which are adjacent to ~t. This provides an

efficient way to multiply the product (
~~ , ~~

) from which the updating
can be achieved trivially. Furthermore, the relationship

+ (~~~
, , 

~i’~ 
— (c~ + c~, ‘ 2~~)

_ _  _ _ _ _ _  ____• • • • - •~~~ • - •- • • -- - • - - - ••••- • • 
~~~~~~~~~~~~~~~~~~~~

• • - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -.
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for nonbasic arcs i — ~~~~~~~~ and i’ — ~~~~~ can be used to red uce the

c~~ utational effort in th is step. The ratio test in Step 5 (and in Step 0

as well) can be somewhat simplified by noting that ~ 0 
~~ ~~

, < 0  if 1.

:1 and i’ are as just mentioned • This implication implies that in carrying

out the test , at moat one of the two arcs i and i’ need to be considered.

- 
Finally, the various results estab lished in this section guarantee that a

- number of arcs will not become basic at the next iterati on. They can

thus be ignored in the test .

~~~~~ 
-

~~~~~
-

~~
- 

~~~~~~~~ — - 
- 

_ _



~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
:- 

~~~~~~~~~~~~~~~~~ 
— _

~~
—- —

35

5. Ca~1puTATxoNAL EXPERIENCE

We have implemented the proposed algorithm for solving some randomly

generated proble ms . The data are generated as follows: The a~ and b~ are

rand om numbers lying in the interva l (0 ,50] and (0 ,20] res pective ly. The

cost ci~ 
is given by ~~~ • d~ + d~ where d1 is equal to 10 if 1. belongs

to a certain random index set and is a random number in (0 ,201 oth erwise.
The reason for generating the costs in this way is to ensure that the

triangle inequality will be satisf ied. The code is written in FORTRAN and
the rims are perf ormed on a DEC-20 computer at Carnegie-Mellon University .
The results are su~~~rized in the tab le below. The times are exclusive

of input and output.

• nodes # arcs # basic arc s # pivots CPU time time/pivot
(in sec.) (in sec .)

40 1, 760 24 56 13.850 0.28
80 6 ,320 45 65 82.456 1.27

120 14 ,280 70 176 732.421 4.16
160 25 ,440 108 420 5 682.318 13.53

Notice that the number of arcs is equa l to N(N- 1) where N is the

• number of regions . ?~ reover , the number of basic arcs can not exceed N-I .

Looking at the c~u times, one could argue that the proposed algorithm

is perhaps not performing as efficiently as it should be • Howeve r, one has

to realize that although these probl ems could be considered as having a

spars e matrix (the arc-arc matrix of an N-node problem has 2N (N-I) 2 nonzero

entries, i.e., density — , ~~) , they are still too big for the direct
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application of most currently existing general-purpose quadratic programsing

and/or linear complementarity algori thms . These times are roughly

proportional to 1O~~ zn4 , a figure which is really not big iii comparison

with the size of the arc-arc matrix. The performance of the algorithm

can be further improved by t*(ng advantage of an important consequence

of the result concerning the no transhipm.nt of flows. This consequence

enables one to fix at least half of the flow variab les at the value 0 and

thus reduces the size of the problem by at least one half. it is stated

and proved in the theorem below .

Theorem Tl.

iteration.

~~ gj. Since there is no tranahipment of flows, it is easy to see that

th. basis matrix M~~ is nonnegative in each iteration . If such an arc Ic

were in S at some itera tion , then since compleaentarity is pre seivad in

the algorithm, we would have

• O~~~~~+lP~~+M.~XJ >0

• which is a contradiction. Q. E. D.

It should be pointed out that this result has not been incorporated

in the coding of the algorithm

• Conclusion. In this paper , we have proposed and implemented a para metric

linear complemsntarity approach for the computa tion of equilibrium prices

in an economic spatial model addressed by Glassey and others . In essence,

the proposed algorithm is a specialized version of the param etric principa l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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pivoting algorithm applied to solve the linear complementari ty problem
• f arising from the model. Like Glassey ’s algorithm, ours can be stated

• and implemented based entirely on the underlying digraph of the model.
- As mentioned in the introduction, the model treated in this paper

- ~
• 

- is a simplification of some other models of a more general nature . In

the near future, we plan to extend the technique used here to treat

various generalizations of the model and will report our findings

elsewhere .

-I 

~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX

We shall show in the sequel that Glassey ’s Algorithm Al (4] fails to

achieve internal equilibrium in certain situations . Following the notations

in the reference , suppose (e 1, i1) is an incoming arc , and E —

and I — ~i1 , . .  .,i~~3 are the coalitiona containing e,
~ 

and t 1 respectiv ely.

• Furthermore , for simplicity, we suppose that there is no outgoing arc.

Thus, for the new prices and of nodes ej  ER and i EIi i  j

calculated according to the algorithm, we have

• 
P e~ 

— 
~~~ 

+ 6e ‘ ~i~
” 
~~ 

+ a~ d + c
~1~ 1 

- — 0

where 
~e ~~~ 

are respectively the prices of the nodes e ER and 1. El
j  j  J

before updating.

Since .~riginally, respective nodes in, E and I have achieved internal
equilibrium, we have for all. Ic ~ t.

p +c e -P c 0 and p +c 
~ 

- p  ~~0CIc e.g~~ 
~~
, ~k ~~~~

which imply

p +c e~~~ p +6 - 8 � 0  and p
• ek ek~~~~~ 

e~ e e La ik 4 .  ~

which in turn imply that the new coalitio n consisting of E and I will, have

internal equilibrium within themselves.

Now if the new coalition formed by EU! attains interna l equilibrium,

‘1 ~~~~~~— -~-~~~~~1~~~~ ~
• -—

~~~~~~~~~~ 
— —- --- —

.;~

~~~~~~~~~~~~~~~ :~ ~~~~~~~~~~
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• then we have for k  1 , . . . m and ~. *

+ c~~~ - > 0 and + c~ - 
~~ 
0

or equivalently ,

p + c  
~ 

p
~ 

+ 6 - 6 ~~> O  and p
~ 

+ C i e  _ P  +$ j~~~~6 �Oek 
~~ 

e

But 6 - 6 p +c 
~ , 

- p  . (Se. (4]). Hencei e e1 e1 ~ 
i1

(p + c 
~, 
+~~~) - ~~~~~ + p  + cek ek L  I ~ e 1 e1 1

for all Ic — l ,...,m; ~ — 1 ,.. .,n.

It is now obvious that the above inequality does not necessarily hold
in general , and thus , internal equilibrium is not guaranteed .

Similarly, it can be shown that if an arc goes out of the basis

simultaneously , then the same situation occurs .

In what follows, we provide a co~mterexample showing how the algorithm

fails to maintain internal equilibrium.

The data are given as follows (for seven nodes):

• a1 — 19.481866 , a2 — 60.873993, a3 — 10 .845196 , a4 — 6.172308, a5 — 63.791228,

a6 — 67.071617, a7 — 37.9193 11; b 1 — 7.324636 , — 0.136526 , b2 3.225784,

— 0.310002 , 
5 

— 1.884832 , 5~~~ 
— 0.530554, b4 — 7.132555 — 0. 140202 ,

• b5 — 0.487533 , — 2.051 144, b
6 — 3.92217% ~6 

— 0.254960, b
7 — 5.383146,

07 — 0.185765 , and c
ii — J i - j J — c1~,, for all i,j.

We choose (e ,i) to became basic whenever Ce — mm (p~ + C~, - Pj  )

i,j j

• -
~~~~~~

- • 

~~~~~~~~~~~ 
- j

~~~ — --•— -•~~~ •—- • -•---•— —- --• •~ ~~~~~~~~~~~~~~~~ - - ~~
.
- -—~—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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• Fo llowing the pr ocedure described by Glassey (5] , we have :

Cycle 1. Form coalition C1 — (4 6)

-
• Cycle 2. Form coalition C2 — (3 5)

Cycle 3. Form coalition C3 — (1 2)

Cycle 4. Form new coalition C2 — (735) . Step 2c gives 935 — 104.497 and

— 2.322564. By algorithm, no arc is going out .

Cycle S. Form new coalition C4 .C 1 UC 2 — (34567) . Step 2 gives new
equilibrium pr ices as: — 49.516340, 

~6 
— 52.516340, 

~~ 
— 51.516340 ,

p4 — 50.516340, p3 — 49.516340. Step 2c gives 975 — 34.600461,

935 — 109.527072 and 
~46 

— 8.25780 1 and x45 — 2.506109. By falgorithm, no arc is going out.

Notice that at this point , internal equilibrium is not achieved in
coaliti on C4 — (34567) .

1~

P 
•

• ——•-• • •-- -
~~~ 

• - • • 

U ~~~~~~
-• — -—-- •-• ---

~

-- ------ — • -- -•—— -~~ -~~~~~ ~~~~~~~~~~~~~~~~~ .-- -~~ •——--— •-•--- - — • - —--• •— --—— .--~~~ •—-- •--••--- - 
• -- —-• —&- — —• -- -

.
~~~~
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